Wednesday, 19 July 2017

Simple Moving Average Algorithm C


Simple Moving Average - SMA BREAKING DOWN Simple Moving Average - SMA Rata-rata bergerak sederhana dapat disesuaikan sehingga bisa dihitung untuk periode waktu yang berbeda, cukup dengan menambahkan harga penutupan keamanan untuk sejumlah periode waktu dan kemudian membagi Jumlah ini dengan jumlah periode waktu, yang memberikan harga rata-rata keamanan selama periode waktu tersebut. Rata-rata bergerak sederhana menghaluskan volatilitas, dan membuatnya lebih mudah untuk melihat tren harga suatu keamanan. Jika nilai rata-rata bergerak sederhana naik, ini berarti harga keamanan semakin meningkat. Jika mengarah ke bawah berarti harga keamanan menurun. Semakin panjang jangka waktu untuk moving average, semakin halus moving average yang sederhana. Rata-rata pergerakan jangka pendek lebih mudah berubah, namun bacaannya lebih mendekati data sumber. Signifikansi Analitis Moving averages adalah alat analisis penting yang digunakan untuk mengidentifikasi tren harga saat ini dan potensi perubahan dalam tren yang telah mapan. Bentuk paling sederhana menggunakan rata-rata bergerak sederhana dalam analisis adalah menggunakannya untuk mengidentifikasi dengan cepat apakah keamanan dalam tren naik atau tren turun. Alat analisis lain yang populer, walaupun sedikit lebih kompleks, adalah membandingkan rata-rata bergerak sederhana dengan masing-masing yang mencakup rentang waktu yang berbeda. Jika rata-rata bergerak sederhana jangka pendek berada di atas rata-rata jangka panjang, uptrend diharapkan terjadi. Di sisi lain, rata-rata jangka panjang di atas rata-rata jangka pendek menandakan pergerakan turun dalam tren. Pola Perdagangan Populer Dua pola perdagangan populer yang menggunakan moving average sederhana mencakup salib kematian dan salib emas. Salib kematian terjadi saat rata-rata pergerakan sederhana 50 hari di bawah rata-rata pergerakan 200 hari. Ini dianggap sebagai sinyal bearish, sehingga kerugian lebih lanjut di simpan. Salib emas terjadi ketika rata-rata pergerakan jangka pendek di atas rata-rata bergerak jangka panjang. Diperkuat oleh volume perdagangan yang tinggi, ini dapat memberi sinyal keuntungan lebih lanjut di toko. Apakah mungkin menerapkan rata-rata bergerak di C tanpa memerlukan jendela sampel, saya telah menemukan bahwa saya dapat mengoptimalkan sedikit, dengan memilih ukuran jendela yang merupakan kekuatan Dari dua untuk memungkinkan sedikit menggeser alih-alih membagi, tapi tidak membutuhkan penyangga akan menyenangkan. Apakah ada cara untuk mengungkapkan hasil rata-rata bergerak baru hanya sebagai fungsi dari hasil lama dan sampel baru Tentukan contoh rata-rata bergerak, di atas jendela 4 sampel menjadi: Tambahkan sampel baru e: Rata-rata bergerak dapat diimplementasikan secara rekursif. , Tapi untuk kalkulasi rata-rata bergerak yang tepat, Anda harus mengingat sampel masukan tertua dalam jumlah (contohnya dalam contoh Anda). Untuk panjang N rata-rata bergerak yang Anda hitung: di mana yn adalah sinyal output dan xn adalah sinyal input. Pers. (1) dapat ditulis secara rekursif. Jadi Anda harus selalu mengingat sampel xn-N untuk menghitung (2). Seperti yang ditunjukkan oleh Conrad Turner, Anda dapat menggunakan jendela eksponensial (jauh lebih panjang) sebagai gantinya, yang memungkinkan Anda menghitung keluaran hanya dari keluaran lalu dan masukan saat ini: namun ini bukan rata-rata bergerak standar (tanpa bobot) namun secara eksponensial. Rata bergerak tertimbang, di mana sampel lebih jauh di masa lalu mendapatkan bobot yang lebih kecil, tapi (setidaknya secara teori) Anda tidak akan pernah melupakan apapun (bobotnya semakin kecil dan kecil untuk sampel jauh di masa lalu). Saya menerapkan rata-rata bergerak tanpa memori item individual untuk program pelacakan GPS yang saya tulis. Saya mulai dengan 1 sampel dan bagi 1 untuk mendapatkan nilai rata-rata saat ini. Saya kemudian menambahkan sampel anothe dan membagi dengan 2 ke avg saat ini. Ini berlanjut sampai saya mencapai panjang rata-rata. Setiap saat setelah itu, saya menambahkan sampel baru, mendapatkan rata-rata dan menghapus rata-rata dari total. Saya bukan seorang matematikawan tapi ini sepertinya cara yang bagus untuk melakukannya. Kupikir itu akan mengubah perut orang matematika sejati tapi, ternyata itu adalah salah satu cara yang bisa diterima untuk melakukannya. Dan itu bekerja dengan baik. Ingatlah bahwa semakin tinggi panjang Anda semakin lambat, mengikuti apa yang ingin Anda ikuti. Itu mungkin tidak masalah sebagian besar waktu tapi ketika mengikuti satelit, jika Anda lamban, jejaknya bisa jauh dari posisi sebenarnya dan akan terlihat buruk. Anda bisa memiliki celah antara duduk dan titik-titik trailing. Saya memilih panjang 15 update 6 kali per menit untuk mendapatkan smoothing yang memadai dan tidak terlalu jauh dari posisi duduk sebenarnya dengan titik jepret yang merapikan. Jawab 16 16 pada 23:03 menginisialisasi total 0, count0 (setiap kali melihat nilai baru Kemudian satu masukan (scanf), satu menambahkan totalnewValue, satu kenaikan (hitungan), satu rata-rata pembagian (jumlah total) Ini akan menjadi rata-rata bergerak di atas Semua input Untuk menghitung rata-rata hanya di atas 4 masukan terakhir, akan memerlukan 4 variabel input, mungkin menyalin setiap masukan ke inputvariable yang lebih tua, kemudian menghitung rata-rata pergerakan baru. Sebagai jumlah dari 4 variabel input, dibagi 4 (pergeseran kanan 2 akan menjadi Baik jika semua input positif membuat perhitungan rata-rata dijawab 3 Feb 15 at 4:06 Itu benar-benar akan menghitung rata-rata total dan TIDAK rata-rata bergerak. Seiring bertambahnya dampak, setiap sampel masukan baru menjadi sangat kecil ndash Hilmar Feb Stack Exchange, IncI tahu ini dapat dicapai dengan dorongan sesuai: Tapi saya benar-benar ingin menghindari penggunaan dorongan. Saya telah googled dan tidak menemukan contoh yang sesuai atau mudah dibaca. Pada dasarnya saya ingin melacak bergerak Rata-rata arus aliran angka floating point yang sedang berlangsung menggunakan 1000 nomor terbaru sebagai sampel data. Apa cara termudah untuk mencapainya? Saya bereksperimen dengan menggunakan array melingkar, moving average eksponensial dan moving average yang lebih sederhana dan menemukan bahwa hasil dari array melingkar sesuai dengan kebutuhan saya yang terbaik. Tanya 12 Jun 12 at 4:38 Jika kebutuhan Anda sederhana, Anda mungkin hanya mencoba menggunakan rata-rata bergerak eksponensial. Sederhananya, Anda membuat variabel akumulator, dan saat kode Anda melihat setiap sampel, kode akan memperbarui akumulator dengan nilai baru. Anda memilih alpha konstan yaitu antara 0 dan 1, dan hitung ini: Anda hanya perlu menemukan nilai alfa dimana efek sampel tertentu hanya bertahan sekitar 1000 sampel. Hmm, saya tidak yakin ini cocok untuk anda, sekarang saya sudah meletakkannya disini. Masalahnya adalah bahwa 1000 adalah jendela yang cukup panjang untuk rata-rata bergerak eksponensial Im tidak yakin ada alfa yang akan menyebar rata-rata selama 1000 nomor terakhir, tanpa arus dalam perhitungan floating point. Tapi jika Anda menginginkan rata-rata yang lebih kecil, seperti 30 angka atau lebih, ini adalah cara yang sangat mudah dan cepat untuk melakukannya. Jawab 12 Jun pukul 4:44 di posmu Rata-rata pergerakan eksponensial dapat memungkinkan alfa menjadi variabel. Jadi, ini memungkinkannya digunakan untuk menghitung rata-rata basis waktu (misalnya byte per detik). Jika waktu sejak update akumulator terakhir lebih dari 1 detik, Anda membiarkan alpha menjadi 1.0. Jika tidak, Anda bisa membiarkan alpha menjadi (usecs sejak update1000000 terakhir). Ndash jxh 12 Jun 12 at 6:21 Pada dasarnya saya ingin melacak rata-rata bergerak aliran arus dari sebuah angka floating point dengan menggunakan 1000 nomor terbaru sebagai sampel data. Perhatikan bahwa di bawah ini update total sebagai elemen sebagai tambahan yang ditambahkan, hindari tumpang tindih O (N) untuk menghitung jumlah yang dibutuhkan untuk rata-rata - sesuai permintaan. Total dibuat parameter yang berbeda dari T untuk mendukung mis. Menggunakan panjang yang panjang bila total 1000 s panjang, int untuk char s, atau double to total float s. Ini sedikit cacat pada numsamples yang bisa melewati INTMAX - jika Anda peduli Anda bisa menggunakan unsigned long long. Atau gunakan anggota data bool tambahan untuk merekam saat wadah pertama kali diisi saat bersepeda mendekati numamples di sekitar array (terbaik kemudian berganti nama menjadi sesuatu yang tidak berbahaya seperti pos). Dijawab 12 Jun 12 at 5:19 seseorang mengasumsikan bahwa operator quotvoid (T sample) quot sebenarnya adalah quotvoid operatorltlt (T sample) quot. Ndash oPless 8 Jun 14 jam 11:52 oPless ahhh. Baik terlihat Sebenarnya saya bermaksud untuk itu menjadi operator void () (sampel T) tapi tentu saja Anda bisa menggunakan notasi apa pun yang Anda sukai. Akan memperbaiki, terima kasih. Ndash Tony D 8 Jun pukul 14:27

No comments:

Post a Comment